Investigation of the influence of laterally varying lithospheric properties on asymmetric strain accumulation across strike-slip faults

by Wen-Jeng Huang¹, Kaj M. Johnson²,

1.Academia Sinica 2.Indiana University

Presenter: Wen-Jeng Huang

DEC. 2009 AGU

The Problem

Western US Strain Rates Inferred from GPS data (Pollitz et al. 2008)

Use gradients in velocity field to identify where active faults are locked and accumulating stress.

Gradients in velocity field can be attributed to:

 Elastic distortion around locked faults
Lateral variations in crustal rigidity (thickness/stiffness)

Can we use geodetic data to infer lateral variation in rigidity ?

Inferred Lateral Variations in Crustal Rigidity

Idealized bimateral fault interface

Elastic Half-Space Models e.g., Le Pichon (2005)

Inferred rigidity ratio (μ_1/μ_2): 30

Inferred Lateral Variations in Crustal Rigidity

Plate Models e.g., Chery (2008), Jolivet et al. (2008)

Flow underneath plates is not considered.

Inferred Lateral Variations in Crustal Rigidity

EL Е SA W 15 UC 30 (L) -15 50 LC 40 N 65 UM-65 -100 -20 0 20 80 x (km)

Lundgren et al. (2009)

Finite Element Models

e.g., Lundgren et al (2009), Schmalze et al. (2005)

Inversions are difficult because models are computationally expensive.

Why revisit this problem?

• Elastic half-space and plate models neglect viscous flow – we show that this is important

• Finite Element models too slow to fully explore model space

Our Approach

Inverse Method

Forward Model

- Need fast models
- Boundary element methods for stress boundary conditions

- Bayesian, probabilistic
- Want posterior probability distributions
- Monte Carlo sampling
- need to compute 100 K's of forward computations

Our Model:

- Elastic layers overlying viscoelastic half-space
- Lateral variation of rigidity: e.g. stiffness and thickness
- Earthquake cycle model
- Boundary element method

Our Model

Boundary conditions

Contrast in Elastic Thickness

Asthenosphere viscosity is important:

Asymmetry is more pronounced for lower viscosities

Contrast in Elastic stiffness

Asymmetry varies with the time since last earthquake (t)

Asymmetry is more pronounced at later times

Contrast in Elastic stiffness

Asthenosphere viscosity is important:

Asymmetry is more pronounced for lower viscosities

Carrizo segment of San Andreas Fault

Results

Great Sumatra Fault

Results

Conclusions

- The asymmetry of strain patterns attributed to the elastic thickness or stiffness contrast becomes more pronounced for lower viscosities and varies with the time since last earthquake.
- For Carrizo segment of the San Andreas fault, the inversion favors a thicker layer on east side (2 times) but stiffer layer on west side (1.4 times); however, uniform thickness and stiffness cannot be ruled out.
- For Sumatra fault, the inversion result shows eastern elastic layer must be stiffer than western one but there is no resolved a contrast in elastic thickness.