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The Problem

Western US Strain Rates Inferred

from GPS data (Pollitz et al. 2008) Use gradients in velocity field to identify

where active faults are locked and
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nferred Lateral Variations in Crustal Rigidity

Sumatra Fault
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Elastic Half-Space Models
e.g., Le Pichon (2005)
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Inferred rigidity ratio (u,/p,): 30
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Inferred Lateral Variations in Crustal Rigidity

Plate Models
e.g., Chery (2008), Jolivet et al. (2008)

Flow underneath plates is not considered.
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Inferred Lateral Variations in Crustal Rigidity

Finite Element Models
e.g., Lundgren et al (2009), Schmalze et
al. (2005)

Lundgren et al. (2009)

Inversions are difficult because
models are computationally
expensive.
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Why revisit this problem?

 Elastic half-space and plate models neglect viscous flow — we
show that this is important

* Finite Element models too slow to fully explore model space

Our Approach

Inverse Method

Forward Model » Bayesian, probabilistic
« Want posterior probability
» Need fast models distributions
« Boundary element methods for ~ * Monte Carlo sampling
stress boundary conditions * need to compute 100 K'’s of forward

computations
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Our Model:

* Elastic layers overlying viscoelastic half-space

o Lateral variation of rigidity: e.g. stiffness and thickness
» Earthquake cycle model

» Boundary element method

viscoelastic: ug;n;
(Maxwell)
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Our Model

Boundary conditions
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Asymmetry of Deformation
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Asymmetry of Deformation
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Asymmetry of Deformation

Earthquake recurrence time(T): 250 years
Relaxation time(tR):50 years
t:1 year (time since last earthquake) COntraSt |n E|aStIC
= A .
5 stiffness
£
=
s . Asymmetry varies with the time
T S —— ? : since last earthquake (t)
~ 4L
. . , . . . Asymmetry is more pronounced
-400 -200 0 200 400 600 at Iater timeS
Distance from fault (km)
|
T/tR=5 elastic: 5 ' elastic: p “I H=20 km
1

viscoelastic: yu;n

11



" JE—

Asymmetry of Deformation
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Carrizo segment of San Andreas Fault
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Carrizo segment of San Andreas fault
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Results

o Plate Velocity
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Great Sumatra Fault
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Great Sumatra Fault
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Results

Plate Velocity
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Conclusions

m The asymmetry of strain patterns attributed to the elastic thickness
or stiffness contrast becomes more pronounced for lower viscosities
and varies with the time since last earthquake.

m For Carrizo segment of the San Andreas fault, the inversion favors a
thicker layer on east side (2 times) but stiffer layer on west side (1.4
times); however, uniform thickness and stiffness cannot be ruled out.

m For Sumatra fault, the inversion result shows eastern elastic layer
must be stiffer than western one but there is no resolved a contrast
In elastic thickness.
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