#### Strain accumulation across strike-slip faults : Investigation of the influence of laterally varying lithospheric properties

#### by Wen-Jeng Huang<sup>1</sup>, Kaj M. Johnson<sup>2</sup>, 1.National Central University 2.Indiana University

#### **Presenter: Wen-Jeng Huang**

Oct., 2012 NCU



# Can we use geodetic data to infer lateral variation in rigidity ?

# The Problem





Use gradients in velocity field to identify where active faults are locked and accumulating stress.

Gradients in velocity field can be attributed to:

 Elastic distortion around locked faults
 Lateral variations in lithospheric rigidity (thickness/stiffness)

Can we use geodetic data to infer lateral variation in rigidity ?

#### Inferred Lateral Variations in Crustal Rigidity





Idealized bimaterial fault interface



Elastic Half-Space Models e.g., Le Pichon (2005)

Inferred rigidity ratio ( $\mu_1/\mu_2$ ): 30

### Inferred Lateral Variations in Crustal Rigidity



#### Plate Models e.g., Chéry (2008), Jolivet et al. (2008)

Flow underneath plates is not considered.

### Inferred Lateral Variations in Crustal Rigidity



#### **Finite Element Models**

e.g., Lundgren et al (2009), Schmalze et al. (2005)

Inversions are difficult because models are computationally expensive.

100

100

## Why revisit this problem?

• Elastic half-space and plate models neglect viscous flow – we show that this is important

• Finite Element models too slow to fully explore model space

# Our Model:

- Displacement-discontinuity Boundary Element Method
- Elastic layers overlying viscoelastic half-space
- Lateral variation of rigidity: e.g. stiffness and thickness
- And Migakeolytion Abap finite-width screw dislocation [e.g. Okada, 1992]





#### **Boundary conditions**



Stress Relaxation time,  $t_R=2(\eta_B/\mu_B)$ 

# Our Model:

### For a purely elastic problem,

 $b = G^* s$  $= s = G^{-1} b$ 

- **b** : a vector of boundary conditions
- s: a vector of corresponding displacements
- **G** : a matrix of Green's functions,



# Our Model

#### Stresses vary with time, so do s and b.



# Our Model:

Stresses vary with time, so do s and b.

At the *jth* increment, the displacement discontinuity distribution is  $j^{-}$ 

$$\mathbf{s}_{j} = \sum_{j=1}^{J-1} \mathbf{G}(t, t_{R}, s_{1}, s_{2}, \dots, s_{j-1})^{-1} \mathbf{b}$$



steady plate motion

# Our Model: EQ cycle model

Scheme for computing an earthquake cycle-invariant velocity profile

$$\mathbf{s}_{j} = \sum_{k=0}^{j-1} \mathbf{G}(t, t_{R}, s_{1}, s_{2}, \dots, s_{j-1})^{-1} \mathbf{b}$$



steady plate motion

# Our Model: EQ cycle model

Scheme for computing an earthquake cycle-invariant velocity profile





creep at zero shear stress

periodic slip

# Our Model: EQ cycle model

Scheme for computing an earthquake cycle-invariant velocity profile





#### Contrast in Elastic Thickness

Asymmetry varies with the time since last earthquake (t)

Asymmetry is more pronounced at early times



Contrast in Elastic Thickness

# Asthenosphere viscosity is important:

Asymmetry is more pronounced for lower viscosities



#### Contrast in Elastic stiffness

Asymmetry varies with the time since last earthquake (t)

Asymmetry is more pronounced at later times



Contrast in Elastic stiffness

# Asthenosphere viscosity is important:

Asymmetry is more pronounced for lower viscosities

#### Contrast in Elastic stiffness

#### **Contrast in Elastic Thickness**



## Monte Carlo Inversion -- Metropolis method

To sample the posterior distribution, we initiate a random walk through the model space that samples the a priori distribution.

$$\underline{\mathbf{m}}_{j} = \underline{\mathbf{m}}_{i} + \sum_{k=1}^{d} \alpha_{k} \gamma_{k} e_{k}$$
, where  $\underline{\mathbf{m}} = [m^{1} \ m^{2} \ m^{3} \ m^{4} \ \dots \ m^{d}]$ 

 $\alpha_k$ : scale factor

 $\gamma_k$ : (-1, 1) uniform random deviate

 $e_k$ : the unit vector along the *k*th axis in parameter space

# Markov Chain random walk An example: samples projected to 2D

 $\underline{\mathbf{m}} = [\underline{\mathbf{m}}^1 \ \underline{\mathbf{m}}^2 \ \underline{\mathbf{m}}^3 \ \underline{\mathbf{m}}^4 \ \dots \ \underline{\mathbf{m}}^d]$ 

The walk moves to the next model with probability



$$P_{ij} = \min\left(1, \frac{\rho_D(g(\underline{m}_j))}{\rho_D(g(\underline{m}_j))}\right)$$

 $ho_D$ : probability density function of the model parameters

# Markov Chain random walk



## Great Sumatra Fault, Indonesia



24



# **Results**

■ For Great Sumatra fault, the inversion result shows eastern elastic layer must be stiffer than western one but there is no resolved a contrast in elastic thickness.

### Consistent with the manifestion of geology



26

## Results



## Carrizo segment of San Andreas Fault, USA



28



# Results



30

# Conclusions

# Can we use geodetic data to infer lateral variation in rigidity ? Yes, we can (up to some degree).

# Thank you for your attention!

## **Great Sumatra Fault**



# Results

ratio of t<sub>R</sub> to T vs. rigidity ratio

#### ratio of $t_R$ to T vs. thickness ratio



T: earthquake recurrence time