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Introduction

Conception

Study area

Result

Discussion and conclusions

Future works References

UAV photography and orthorectification: mapping dikes and main faults on the ground surface.
Field work and structural mapping: documenting the structures in dikes in detail.
Electrical resistivity imaging(ERI): exploring the distribution of the dikes beneath the ground surface.

To explain and explore:
Dikes  standing in en-echelon arrangement
Difference in structural behavior between of dikes and country rocks
Structural evolution of dikes since the dike intrusion Fig. 1. En-echelon dikes on platform

 Lamprophyric dikes are standing in right-stepping en-echelon 
arrangement up to 2.3 meters high within Lai-Lai marine platform 
(Fig.1). Folds, faults, joints, and other mesoscopic structures are 
associated with the dikes.

N

Goal

Method

Being Faulted after the dike intrudes (Fig. 5a)
Rotation of the least principal stress field as the surface is 
approached during dike intrusion (Pollard, 1987; Fig. 5b)

Fig. 2. Conditions for dike intrusion

Fig. 3. Mechanisms of dike intrusion

Fig. 4. Mechanisms of dike propagation on dike tips

Fig. 5. Formation of en-echelon dikes

Magma propagation

(a) (b) (c)

Dike intrusion 

Scenarios of en-echelon dikes 

Conditions for dike intrusion (Anderson, 1951; Fig. 2)

1. P ≧σ  (P : magmatic pressure, σ :overburden pressure)m z m z 

2. The least principal stress, σ , is horizontal and 3

perpendicular to orientation of dike.
Mechanisms of dike intrusion (Pollard, 1973)

1. Forceful injection(Fig. 3a)
2. Intrusion into pre-existing fissures (Fig. 3b)
3. Metasomatic replacement (Fig. 3c)

Mechanisms of dike propagation on dike tip (Pollard, 1973)
1. Extension fracturing (Fig. 4a )
2. Brittle faulting and stoping (Fig.4b )
3. Ductile faulting and flow (Fig. 4c)
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 Lailai wave-cut platform is located at the northeastern 
coast of Taiwan (Fig. 6). The marine platform composed 
mainly of argillite within the Oligocene Tatungshan 
formation is the extension of Hsuehshan range, which has 
the tallest peak of 3,886 m high in Taiwan.

  A series of folds commonly plunging 
northwards appear on the marine platforms (Fig. 
7). The stratified rocks exposed on them mostly 
incline to north. Lailai is located on the eastern 
limb of an open syncline ( red box in Fig. 7). A set 
of NNE-SSW strike-slip faults widely distribute 
on  all the platforms. 

 The stratified rocks exposed on the Lailai  
platform was deposited on continental shelf 
during late Oligocene. The dike intrusion  took 
place in late Miocene of 9.1±1.1 Ma ago (Chen et 
al., 1989). According to the stratigraphic 
analysis, the dikes were likely formed at depth of 
2.9 km. Since then, the dikes have experienced 
tectonic deformation,  especially Penglai orogeny 
beginning in Pliocene.

Fig. 6. (a) Regional geologic map (b) Cross sections along A-A’, B-B’, and C-C’

Fig. 7.  Structural map 
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Field works

Fig. 11. Structural maps and photos of dikes.19 dike segments
        labeled from A at far right to S at far left,11 main faults 
        labeled with Roman numeral ( I to  XI) from right to left .

Fig.10. Distribution of dikes, faults, folds, and strata 
on Lailai platform. Line L1 to L4 are ERI sections.

Structures in dikes
    1. Ubiquitous in all dikes

a. Strike-slip faults cutting dikes 
in a angle of less than 45° (green 
lines in Fig. 12)
b. Reverse faults dipping to west 
    (red lines in Fig. 12)
c. Step-like boundaries  on dikes which usually appear 

together with strike-slip faults.
2. Sequence order of structures in dikes: step-like 

boundaries=>strike-slip faults => reverse faults 
(likely formed under same stress status with fault IX)

Main faults
    Most of main faults are high-angle west-dipping right-lateral faults. 
Most of dikes are cut by faulting at their ends except Dikes B, C, J, 
and K have intrusive contact with country rocks (Fig. 11 & Table. 1).

Electrical resistivity imaging (ERI)
Dike G vertically extends downward to 15 meters depth at least (Fig. 14).
We derive the dip angle, 14°, of  thefault IX from  information of a shallow 
drilling. It accords to the  vertical extension of dike K, which is only about 
4.5 m in depth, in the image of profile L4.
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Fig. 8. Aerial photo without orthorectification  Fig. 9. Orthophotograph. Red lines are  the locations 
of dikes surveyed by total station for comparison.

Fig. 15.  Close-ups of structures (a) step-like boundary between 
dike and country rock (b) quartz vein with slickenside (c) 
duplex structure (d) asymmetric wedge-shaped dike tip
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Fault Strike (°)
Dip (angle/dip 

direction)
Type of fault  Separation (m)

I ? ? ? ?

II N6°W HA/ ? RLF 3.1

III N10°E HA/ ? RLF 0.1

IV N6°E HA/ ? RLF 0.3

V N2°W HA/ ? RLF
2.56 (In total)

VI N4°W HA/ ? RLF

VII N9°E HA/ ? RLF 0.2

VIII N5°W HA/ ? RLF 1.87

IX N22°E 14°/W RSF 7.1 (Estimated)

X N16°W HA/ ? RLF 5.5

XI N30°W HA/ ? RLF 3.6

Note: ?(Not sure), HA(High angle), RLF(Right-lateral fault), RSF(Reverse-slip fault)

Table. 2. Length of each dike and information of faults within dikes Fig. 14. Electrical resistivity images in profile L1 to L4

Dikes Length (m)
Reverse fault 

(sets/number/angle)
Strik-slip faults (number 

/d suplex tructure)

A 2.57 None None/None

B 12.55 1/1/LA,2/1/HA 1/d.s.

C 4.97 1/1/LA None/None

D 12.13 1/1/LA None/None

E 4.29 None None/None

F 17.61 1/2/LA 2/d.s.

G 28.58 1/4/LA 6/d.s.

H 3.55 None 1/d.s.

I 15.03 1/6/LA, 2/2/HA 2/d.s.

J 2.7 None None/None

K 32.95 1/5/LA, 2/8/HA 2/d.s.

L 2.95 None 1/None

Note:  HA (High angle, > 45 ), LA (Low angle  30 )° , < °

Fig.8. is an aerial photo of Lailai platform taken via unmanned 
aerial vehicle (UAV). Its orthophotograph is shown in Fig. 9.  
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Table. 1. Collated information of main faults

Dike G
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Dip:14°
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Fig. 12. Structural maps of dikes: (a) Dike K (b) Dike I (c) Dike G. 
Structures in dikes commonly don’t extend into country rocks or they 
terminate within the country rocks very close to the contact with the 
dikes.
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Fig. 13. South elevation. Reverse faults in dikes G, H, I and K in associateion to fault IX in south 
side of dike mapping.

3. Structural differences between the dikes in the hanging wall of the fault IX 
(Fig. 13 & Table. 2) and those in the foot wall:
a. Reverse faults appear more intensively in either side near fault IX 
b. Higher angle (45°) reverse faults only occur in dikes in the hanging wall 

of fault IX.
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            The N-S striking right-lateral faults and fault IX both crosscut other structures and displace dikes. 
Namely, the faulting took place after dike intrusion and played the main role in arranging  the dikes. We 
restore these displaced dikes accordingly. The dikes remain en-echelon arrangement but reduce to three 
segments only instead of 19 (Fig. 16).

 Dike-parallel adjacent 
joints and regional joints are 
both present in dikes on Lailai 
platform. The shape of dike 
tail-ends is not blunt or digital 
but  wedge-shaped. It implies 
that magma ascended along 
pre-existing fractures and 
filled up them (Fig.17). 
 Thus,we conclude that 
magma ascended along pre-
existing regional joints in en-
echelon arrangement, which 
might merge into one fracture 
at deeper depth.
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(c)

(d)

(e)

(f)

Fault IX

Fault IX

Fault IX

 The structural evolution of the dikes in sequence of events: (a) echelon joints formed (b) magma intruded (c) strike-slip faults (most of all are right-lateral) occurred in dikes 
and fold occurred in country rocks (d,e) reverse faults occurred in both dikes and country rocks (f) N-S right-lateral faults formed (Fig. 18).

Fig. 16. Restoration of  displaced and faulted dikes.

Fig. 17. A scenario for the formation of  the en-echelon dikes at Lailai marine platform.

Formation of en-echelon dikes

Faulting on LaiLai marine platform

Proposed scenario for the structural evolution of dikes in Lailai
Fig. 18. Structural evolution of dikes 
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Estimating the amount of horizontal shortening of dikes in total .
Determining the dip angle and net slip direction of each main fault by ERI.
Observing structures in country rocks and comparing structural behavior in 
dikes with structural behavior in country rocks.

Anderson, E. M., 1951. The dynamics of faulting and dyke formation with applications to Britain. Oliver and Boyd, Edinburgh and London,
       206 pp.
Chen, C. H., Liu, T. K., and Lo, H. J., 1989. An alkali basaltic dike in Lailai northeastern coast Taiwan. Proceedings of the Geological Society
    of China, 32, 4, 295-316.
Pollard, D. D., 1972. Derivation and evaluation of a mechanical model for sheet  intrusions. Tectonophysics, 19, 233-269.
Pollard, D. D., 1986. Field relations between dikes and joints: emplacement processes and paleostress analysis. Journal of Geophysical 
Research, 91, 4920-4938.

Explanation

Dikes
Country rock
Reverse fault
Strike-slip fault
Joint or fracture
Quartz vein with slickenside
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